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1 G(z)=H(x)

We give the proof about G(z) = H(x).
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It is obvious that 37> _(— 1)k1((2k_1)x7(2k+1)x) (u) is a 4z-periodic function and is even(consider
function graph).
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Now, we have
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where X ~ N(0,1). Note that
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We proved that G(z) = H(x).

2 Recurrence of random walk on Z by optional stopping

Theorem 2.1 (Optional stopping theorem). Let { M, }nen be a martingale and T is a stopping
time respect to filtration {Fp tnen. We have that E[|Mr|] < oo and EMp = E[Mjy] if one of the
following holds

(i) The stopping time T is a.s. bounded; that is, there exists C > 0 such that T < C a.s..
(i) T < oo a.s. and { My }nen is uniformly integrable and E[|Mr|] < co.

Remark 2.2. Note that the condition E[|Mr|] < oo is redundant. Indeed, by the martingale
convergence theorem we know that if { My, }nen s a martingale with sup,, E[|M,|] < oo, then there
exists a random variable My, such that M, — My a.s. and E[|My|] < co. Let M,, = Mrpn,
then we have
SUpE[IM, ] < Sup E[| M < sup B[4 | < .
n n

In fact, E[Mppy,] < E[M,] for T < oo a.s.. It is obvious that {|M,|}nen is a sub-martingale,
define Uy, = |M,,| — |Mrpn|, we can obtain that

Unt1 = Un = (IMnt1| = |Mn|)1ir<ny
due to ‘MT/\(nH)‘ — |Mrpn| = (Mp+1 — My)1{pspy. Therefore,
ElUn+1 — Un] = Yyr<py - E[|Mpy1| — [ M| [Fn] = 0.
It is obvious that {M,}, = {Mran}n is martingale, therefore, we have
M, — My a.s..

and E[[My|] < oco(i.e. E[Mr] < oo since T < o0 a.s.).

Remark 2.3. The Optional stopping theorem is important, Let T = inf{n : S,, = 1}, we can
prove that T < oo a.s.(recurrent), but Sy =1 a.s., Sy = 0, we observe that E[St| # E[Sp].



It is obviously that {Sy}nen, is a martingale. Let T, := inf{n : S, = z}, then T} is a
stopping time. For a < 0 < b, define stop time Ty := T, A T}, which is the first exit time of
(a,b). Since My, := St, ,an < |a] V [b] a.s., and T}, < 0o Pp-a.s., we have

0=E[Mr,,) =P(T, <Tp)-a+P(T, < Ty) - b=P(T, < Ty)(a — b) +b.

(where T}, < 00 a.s. is due to that Wald’s identities and Dominated convergence theorem) can
obtain E[T}, 3] < co. Therefore,

Note that i 4+ S,, have the distribution of a random walk started at ¢, Thus, for all 0 < i < k,
k—1

]P)i(To < Tk) = Po(Tfi < Tk;—i) = 2

Note that
]PJI'(TO = OO) = lim Pz(Tn < T()) =0,

n—oo
Remark 2.4. We also can prove that T, < 0o a.s. by estimating P(T,, > nl) where I :=b—a.
In fact, for any a < x < b,
P(Spi1 ¢ (a,0)|Sy =2, Tup >n) > PV 0<j < I,Xppjr1=1|S, =2,Top >n)=2"".

Since Top > n+ I implies that To, > n and Syy1 € (a,b), therefore, we have

IP>(Ta,b >n+ I)
b—1
= Z P(Top >n+ 1Sy =2,Top >t) - P(Sy =2, Tap >n)
r=a+1
<(1 =277 -P(Top > n)
Inductively, we have
P(T,p >nl) < (1—-2"1)"

3 Borel-Cantelli Lemma and almost sure convenience

The proofs of almost all strong theorem are based on different forms of the Borel-
Cantelli Lemma and those of the Markov inequality. The main idea of Borel-Cantelli
Lemma is to construct a series to control the probability of evens.

Lemma 3.1. If Y 2 P(A,) < oo, then P(limsup,,_,, Ay) := P(A4, i.0.) = 0.
Proof. Define generalr.v. £ := > > 14, it is obvious £ is not negative. By E[¢] =Y 7 | P(4,) <

n=1
00, we have £ < oo a.s., which is due to

1
P(gzoo)gP(gzN)gﬁ

By £ < oo a.s., we have P(4,, i.0.) = 0. O

E[¢].

Proof.

n—o0

P(limsup Ay) = lim P(UpzpAg) < lim. kZIP(Ak) — 0.



Corollary 3.2. If

(i) 00, (40| Ba) < o0

(i) By, occurs a.s. if n is large enough,
then A, occurs a.s. only finitely many times.

Proof. By Lemma 3.1, we have

fiMAnt fi P(A,|Bp)P 53 P(A,|B).
n=1 n=1 n=1

Therefore, A, B, occurs a.s. finitely many times. By (ii), we complete the proof since B, = Q
if n is large enough. O

The converse of the Borel-Cantelli lemma is trivially false.
Example 3.3. Let Q = (0,1), F = #£((0,1)) and P = A. If 4, = (0,a,) where a,, — 0 as

n — oo, then limsup 4, = 0, but if a,, = l, we have Y a, = oco.

Lemma 3.4. Let S, := ;| X}, where X > 0. If E[S,] = oo, sup,>; E[X,] < oo and we
can find C,0 > 0 such that for any n € N,

Var(S,) < C - (E[S,])?~° (1)
then
nh—>H§OIES’n] =1 a.s..

Proof. We can assume 0 < M := sup,,»; E[X,] < 1. Note that 0 < E[X,,] <1 and E[S,] — oo,
it is easy to see the integer part of { E(n) := E[S,]},>1 can take all natural numbers. Therefore,
we can find a subsequence {nj}r>1, such that

ki < E(ng) <ki+1, VEk> 1L

By Markov’s inequality, and (1), we have

Sn Var(S,,) C
P k1> < < 1 .
<‘E(nk) '_6> — g2, E(nk) 2. k2’ Vk>1,e>0

By Borel-Cantelli’s lemma, we have

For n large enough, there exista k large enough such that n € [ng,ngy1). In this time, utilize
the monotonicity of S, and E(n), we have

E(ng) . Sy - Sh - E(ngy1) _ S
E(ng) E(ng) = E(n) = E(ng)  E(ngga)
Since % — 1 when k£ — oo, we complete the proof. O



Lemma 3.5. If {A,}n>1 are independent evens, then

iIP’(An) =00 = P(A, i.0.) =1
Proof. Since P(liminf,, o Ap) = lim,_, P(Ur>,Af), by the independence of {A,},>1, we have
P(Mil, AR) = IGL, P(AR) = (1-P(Ag)) < TLL, exp(=P(Ag)) = exp ( ZP (Ak) ) — 0(m — 00).

Therefore,
IP’(hmlanC) = hm P(ﬂk LA%L) = lim lim P(N{L,) = 0.

n—00 Mm—00

O
In the following, we use Corollary 3.4 to prove
Lemma 3.6. If {A,}n>1 are pairwise independent evens, then
oo
> P(An) =00 = P(4y i0) = 1.
Proof. Let Sy, := %, 14,, we compute the variation of S, for any n € N,
Var(S ZVar 1a4,)+2 Z Cov(1a,,14;)
k=1 1<i<j<n
n n
=Y P(Ay) — Y PP(Ap) <E[S,].
k=1 k=1
Due to E[S,,] — oo, by Corollary 3.4, we have S,, — oo a.s.. O

Proof. We only need to prove P(Sy < a) =0Va > 0. For any a > 0, take N > 1 large enough,
such that E[Sy] > a. Then for any n > N, we have

P(Ss < a) g P(Sn < a)
P(—(Sy — E[S,]) > E[S,] — a)

E[|S, —E[Sa]]"] _  Var(S,)
[E[Sa] —al*  [E[Sa] - af?
__ElSa] -0
" E[Sa] —af*
when n — oo, since E[S,] — oo. O

Lemma 3.7. Let Ay, As, cdots be a sequence of evens for which

o

and
lim inf 21 iz P(ARAN) C (C>)

o (SR P(A)? T

P(limsup) > O~

n—An

then



The ideas to prove a.s. convergence by Borel-Cantelli lemma:

Lemma 3.8. Let {T),}n>1 be r.v. such that

(o]
D P(|Tul > €) <0
n=1

for each e > 0. Then T, — 0 a.s..

Proof. For each k > 1,
oo
D P(|Tn| > 27F) < o
n=1

Hence, by the Borel-Cantelli lemma(use [limsup,, A,]¢), for each k > 1, |T,,| < 27% for all n
sufficiently large, except on a null event Nj. It follows that

Tn(w) — 0 forall w¢ U2 Ng.
Since UpZ | Ni is a null event, T, — 0 a.s. follows. O]

Lemma 3.9. Let {T),}n>1 be r.v. such that

(0.)
D P(|Tu| > £4) < 0
n=1

for positive constant £, — 0. Then T, — 0 a.s..
Proof. Applying Borel-Cantelli lemma to events {|T},| > e, },n > 1. O

We need to estimate P(|T,,| > ¢), it just the Chebyshev inequality
P(|X| > ¢e) <E[X]]/e

P(|X — E[X]| > ¢) < Var(X)/e?

and
P(X > ¢) < exp(—te)E[exp(tX)]

for each € > 0 and real ¢.
The ideas to prove a.s. convergence. The moment estimate also is useful.

Lemma 3.10. Suppose that
oo
S E[T] < o,
n=1

for some p >0, then T, — 0 a.s..

Proof. By > >° | E[|T,"] < oo, we have E[> > |T,,|’] < co. Moreover, > > |[T," < oo a.s.
and hence that T, — 0 a.s..
O

The ideas to prove a.s. convergence by extracting subsequence.



Lemma 3.11. Let { X, }n>1 is 7.v. sequence, if there exists a subsequence {ny}r>1 such that

Xp, — X a.s..

and
max Xn—Xn, | 7 0as..
nE_1<n<ng
Then,
X, — X a.s..
Proof. For n large enough, there exist a unique k such ng_; < n < ng, then
| Xn — X| < |Xn,, — X|+ max  |X,,— Xp, | = 0as.
ng—1<m<ny
O
Theorem 3.12. s
lim — =0 a.s.. (2)

n—oo N

S

n
n

] =0 and E[i—%] = %, by Chebyshev inequality, for any € > 0, we have

"

Therefore, we have 22> — 0 a.s. when n — co. Now we have to estimate the value of Sj, for the

Proof. Since E|
Sn

n

>e | < —
>_n627

n
k lying in the gap. If n? <k < (n + 1)2, then

Sk| _ |Suen® | Sk — Sy
k|l | kn2 k
Sp2 k—n? S2 (n+ 1)2 —n?
ST ’k S 2 =0 as.

Proof. Using f(t) := Ele!"] = (ﬂTf
4
: ] =n""+6Cm™ = 0(n7%).

t)n, E[S2] = £ (t)]s=0. We have

n

E |2
g
By Theorem 3.10, we complete the proof.

2ne?
> € S 2 exp —m y

n

Remark 3.13. By Bernstein inequality,

P<S

n

it is obvious that (2) holds true.



4 Between LLN and LIL

By (2), we have |S,| = o(n) a.s., it is natural to ask whether a better rate can obtained, in fact
we have.

Theorem 4.1. For any e > 0,

. S
lim —— =0a.s..
n—00 n5+6

Proof. For any a position integer, by E[S2K] = f5)(t)],—o, we have

E[S?K] = O(n").

?|

By Lemma 3.10, we complete the proof. O

Note that for 2¢e K > 1, we have

Sl 1
nKJrZEK ~ n2sK )

By Borel-Cantelli lemma, we can obtain

Theorem 4.2.

S,
limsupjin| <1 a.s..
n—oo n2logn

Proof. By E[et*"] = (et+726_t)n, we have

E {exp (nféSnﬂ — /2,

Hence,

1 _1 1

P(S, > (14+¢)n2logn) =P (exp(n 2S,) > nHE) < e
Moreover,
S,
limsup ———— < 1 a.s..
n—oo n2logn
By the symmetry of S, i.e. S, equal to —S,, in law, we complete the proof. 0
Theorem 4.3. For any e > 0,
S

lim ————— =0 a.s..

n—00 n(log n)l—i—a
Proof. First, we prove Kolmogorov’s maximal inequality. Let X1, Xo,--- be independent, mean-

zero and E[X?] < oo Vk € N4. Then

2 n
IP( sup |Sk| > A) < E[S) = iZVar(Xk).

)\2 2
1<k<n k=1



We partition A* := {sup; <<, Sn > A} into the events Ay, := {|Sx| > Aand |S;| < A for all j < k},
then we have

E[S2] > E[S2 14+] = ZE [S214,]
= Z [S7 14,] + 2E[Sk(Sn — Sk) 14,] + E[(Sn — Sk)?*14,])

> ZE[S,% 14,] > ) NP(Ag) = N’P(A”).
k=1 k=1

Second, let X1, X5, -- be independent, mean-zero and E[X,f] < oo Vk € N4, then

ZVar <oo:>ZX < 00 a.s..
1=1

By the assumptions about {X;};>1, we see {S,}n>1 is a the Cauthy sequence in L?(f2) space.
Therefore, there exist a S, € L?(f2) such that S, — S in L?(Q2). Moreover, there exist a
subsequence {ny}r>1 such that S,, — So a.s...

For any k > 0 (let ng := 0,5y = 0), by Kolmogorov inequality, we have

IP’< max  |Sp, — Sy, | ZE) < E%EHS

Nk+1
N <p<ngt1

— S|

Note that - -
STE[Sn — Sel 1= Y EXZ) < 00
k=1 n=1

By Borel-Cantelli lemma, we obtain that

max  |S, — Sp,| = 0 a.s..
N <p<npy1

Combining Sp,, — S« a.s., we can obtain S,, = S, a.s.. which called Extract Subsequence
Method. In fact, for n large enough, there exists a unique k£ large enough such that ngi_; <
n < ng, then

|Sh — Seo| < ‘Snk_l — Soo‘ 4+  max ‘Sm — Snk_1‘ — 0 a.s..

ng_1<m<ng
Kronecker’s lemma Let {a,}n>1 is a sequence of real number, and suppose b, 1 oo. If

>_i 5 < 0o, then 72%3 0.
Finally, let a,, = X, (w) and b, = y/n(logn)!*+¢ 1 oo, it suffices to show that

Z 1+€ < o0 a.s..
— Vn log n
We only need to check
iVar X = i Var(X;) = 3 1 o0
— n(log n)t+e P n(logn)l+e P n(logn)i+e



Let f(z) = m, for = large enough, we have f(x) > 0 and f is a monotonically decreasing

continuous function about z. Define F(z) = loglogz if a = 1, F(z) = 2= (logz)' ™ if a # 1,
then we have F'(z) = f(z) for x large enough. Therefore,

/ ) - 5

L(logN)'=2, if o > 1.

O
Similarly, we can obtain that for any ¢ > 0, k € N,
S
lim - =0 a.s..
n—oo

The best possible rate was obtained by Khinchine which is called Law of Iterated Logarithm,
: Sn
lim sup

—————=1a.s..
n—oo V2nloglogn

Lemma 4.4. For any positive integer N, we have

Proof. Since

otk otk
and e .
E[etXl] = 5 <ez2
By taking t = ffL , we have .
nt
P(S, 2K < =eh

Lemma 4.5 (Reflection principle). For any positive integer m, we have

P(M,;" >m,S, =s) = (S = s), if s >m,
, P(Sﬂ :27”/—8)7 7:f8 <7n’

and
m—1 o]
P(M,  >m)=P(Spy =m)+ > P(Sp=2m—s)=P(Sy=m)+ » 2P(S,=k)
§=—00 k=m+1
and thus

Lemma 4.6.

10



Proof. Recall Stirling’s approximation
n
n! ~2mn (ﬁ)
e

Then, we have

P (Son =2k) = = 15;?'121' EySTE
N 1 1 1
R R VT
L (-5
Vs ey

Note that we need (n — k) — oo to use Stirling’s formula. We choose k = |z,/%| so that

% — . It is not hard to see that if x, — 0, and y, — oo such that z,y, — t, then

(1 + x,)% — e!. Therefore,

89

<”¢27L>_x BT

O
Lemma 4.7. Let k > n%, then there exist a constant C such that
i 2
2 _k
P(S, > k) > C - %e—ﬂ.
Proof. Tt is easy to see
BE
n 1 m
}P’(Sn>/7<:)>]P’(/7<;<Sn<l~1:+E)ZC’Wf5 e .
m=k
For k <m <k + 7, we have
2 m2 (k42)2 2 2
612%1>e_%>e_ 27’f :eXp<—2n—1 2nk2>_0612€"
Therefore, we have
1
3 2
P(S, > k) >C - e
O

Theorem 4.8. Define F,, := +/2nloglogn, then we have

S,
limsup — =1 a.s..
n—oo n

Proof. The proof will be presented in two steps. The first one gives an upper bound of
lim sup,,_, %Z, i.e. for any € > 0, we show that

S,
limsup — < 1+4¢ a.s..
n—oo n

11



The second one gives a lower bound of limsup,,_, .. %Z, ie for0<e< %,

) S,
limsup — > 1 —¢ a.s..
n—oo n

Step 1. Let © > 1, ng := L@kJ, by reflection principle and Lemma 4.4, we have

P (M > (1+e)F,,) <2P(Sp, > (1+¢)Fy,)
1 2F?
< 2exp <_(+5)w>

2np
= 2exp (—(1 + 5)2 log log nk) ~ (klog@)_(1+5)2
By Borel-Cantelli lemma, we have
M,jk < (1+¢)F,, as.,

for all but finitely many k.
Let ngy <n < ngy1,

+
& S M;Li_ _ Mnk+1 Fnk+l ]\{j;‘r S (1 +5)% S 1 +28 a.s.,
FTL FTL Fnk+1 Fn Mnk+1 Fn

where O(¢, k) is close enough to 1.

Step 2. Define n; = njy1 — ng, by the definition of {Sy,}n>1, we have {Sy, ., — Sn, Fr>1
is mutually independent, Sy, and Sy, , — Sy, are equal in law. By Lemma 4.6, for large k(¢)
enough, we have

1

n2 (1-— 5)2F2
P (Say = Sncs = S 2 (1= 2)F) 2 - [ oxp (‘ oy
1 2
v L (logny)(1-2)
oz Togm; 8 ™)
where the last sim is due to 0 < ¢ < % Note that logng ~ k, we have Zzo:l P(Snk >

(1 —€)Fn,) = 00, by Borel-Cantelli lemma, we have

S

Nk+1

> Sy, + (1 —¢e)Fy, i.0.as.

By the symmetric of the upper bound, we have

liminf% > liminf& > —(1+¢) a.s..

k—oo L'y, n—oo I,
Therefore, we have
Snk+1 > Snk Fnk + (1 - 6) Fnk
Fnk+1 Fnk Fnk+1 Fnk+1
1
F F 1 O—-1\2
> —(1+e) =2 +(1—g)—% — —( +1€) +(1-¢) () .
N1 N1 CH S}
Take ¢ — 07 and © — oo, we complete the proof. O

Using almost the same method, we can prove the result about Brownian motion. For the
convenience of the readers, we provide the detailed proof.

12



Theorem 4.9. For a Brownian motion B in R, we have

B
! 1 a.s..

limsup ————= =
t_mop V2tloglogt
Proof. when u — 0o, we have

o0 1 c0 12
/ e 2dy ~ut / re~ 2
u u

1 2 1 «? 1
— - dx = —d(e™ = —
/u x(xe 7)da /u xr ™) o

Let MtJr = SUpg<s<; Bs, then by reflection principle, we have

Il
<
|
(@)
N

In fact,

~——u e T

P(M* > ut?) = 2P(B, > ut?
( t ) (t ) m

Step 1. Define F; = \/2tloglogt, for any © > 1 and 1 4+ ¢ > 1, for n large enough, we have

P(Mg, > (1+¢)For)
Bor (1 —l—s)F@n)

SQP(@ Jor

< onr ox 11+ £)’F2,
@ +erre, P2 en
1
p(—(1+ £)?log log ") ~ (nlog @)_(Ha)Q.

S————ex
~Vloglog O™

By the Borel-Cantelli lemma, we obtain that for n large enough,

Mg,
TSTL <(14¢) a.s..

Therefore, for ©" < t < ©"*! © approach 1,
By M MZ,. Fonrn M Fon
t b oot Tt < (1+e) (}Hgl—i—%a.s..

F,~ R Fon R M}, }

Step 2. For 0 < e < %, we have

1 21,2
(@n+1 . @n)i (1 — 6) F[@n+1_@n]
n — n — n n > = -
1 —(1-¢)?
~ log(@" ! — @"
V/loglog(©"F1 —On) (g )

Since log(©" ! — ©") ~ n, we have

o0
> P (Bgni1 — Bon > (1 - ¢)Flgni1_gn)) < o©.
n=1

By Borel-Cantelli lemma, we have

B®n+1 > Bon + (1 — E)F[en+1_@n] 1.0. @.S..

13



By the symmetric of the upper bound, we have

Bon B,
liminf =2 > liminf —- > —(1+¢) as..
n—o0 on t—o00 Ft
Therefore, we have
B@n+1 .
W Z B@n —+ (1 — €)F[@n+l_@n} 1.0. a.S..
B n B n F n F n —(On
ort > 29 b (1—e) e
®n+1 F@n F@n+1 F@n+1
F@n F[@n+1_®n] (1 + 5)
>—(1+e¢ +(1—c¢ — — +(1—¢
- ( )F9n+1 ( ) F@n+1 @% ( )

Take ¢ — 07 and © — 0o, we complete the proof.
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