Random Walk in Random Environment Chapter 4

Wenjie Ye

January 3, 2025

 $1 \quad G(x) = H(x)$

We give the proof about G(x) = H(x).

$$\int_{-x}^{x} \sum_{k=-\infty}^{+\infty} (-1)^{k} \exp\left(-\frac{1}{2}(u-2kx)^{2}\right) du = \sum_{k=-\infty}^{+\infty} (-1)^{k} \int_{(2k-1)x}^{(2k+1)x} e^{-\frac{1}{2}u^{2}} du$$
$$= \int_{-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} (-1)^{k} \mathbf{1}_{[(2k-1)x,(2k+1)x]}(u) e^{-\frac{1}{2}u^{2}} du.$$

It is obvious that $\sum_{k=-\infty}^{+\infty} (-1)^k \mathbf{1}_{((2k-1)x,(2k+1)x)}(u)$ is a 4x-periodic function and is even(consider function graph).

$$\sum_{k=-\infty}^{+\infty} (-1)^k \mathbf{1}_{((2k-1)x,(2k+1)x)}(u) = a_0 + \sum_{n=1}^{+\infty} a_n \cos\left(\frac{2n\pi}{4x}u\right),$$

where

$$a_0 = \frac{1}{4x} \int_{-2x}^{2x} \left(-\mathbf{1}_{(-2x,-x)}(u) + \mathbf{1}_{(-x,x)}(u) - \mathbf{1}_{(x,2x)}(u) \right) \, du = 0$$

and

$$a_{n} = \frac{2}{4x} \int_{-2x}^{2x} \left(-\mathbf{1}_{(-2x,-x)}(u) + \mathbf{1}_{(-x,x)}(u) - \mathbf{1}_{(x,2x)}(u) \right) \cdot \cos\left(\frac{2n\pi}{4x}u\right) du$$
$$= \frac{4}{n\pi} \sin\left(\frac{1}{2}n\pi\right).$$

Therefore,

$$\sum_{k=-\infty}^{+\infty} (-1)^k \mathbf{1}_{((2k-1)x,(2k+1)x)}(u) = \sum_{n=1}^{+\infty} \frac{4}{n\pi} \sin\left(\frac{1}{2}n\pi\right) \cos\left(\frac{2n\pi}{4x}u\right)$$
$$= \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{1}{n} \sin\left(\frac{1}{2}(2k+1)\pi\right) \cos\left(\frac{(2k+1)\pi}{2x}u\right)$$
$$= \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \cos\left(\frac{(2k+1)\pi}{2x}u\right).$$

Now, we have

$$\frac{1}{\sqrt{2\pi}} \int_{-x}^{x} \sum_{k=-\infty}^{+\infty} (-1)^{k} \exp\left(-\frac{1}{2}(u-2kx)^{2}\right) du$$
$$= \int_{-\infty}^{+\infty} \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k+1} \cos\left(\frac{(2k+1)\pi}{2x}u\right) \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^{2}} du$$
$$= \mathbb{E}\left[\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k+1} \cos\left(\frac{(2k+1)\pi}{2x}\mathbf{X}\right)\right]$$
$$= \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k+1} \mathbb{E}\left[\cos\left(\frac{(2k+1)\pi}{2x}\mathbf{X}\right)\right]$$

where $\mathbf{X} \sim N(0, 1)$. Note that

$$\mathbb{E}\left[\cos\left(\frac{(2k+1)\pi}{2x}\mathbf{X}\right) + i\sin\left(\frac{(2k+1)\pi}{2x}\mathbf{X}\right)\right]$$
$$= \mathbb{E}\left[\exp\left(i\frac{(2k+1)\pi}{2x}\mathbf{X}\right)\right] = \exp\left(-\frac{(2k+1)\pi^2}{8x^2}\right)$$

We proved that G(x) = H(x).

2 Recurrence of random walk on \mathbb{Z} by optional stopping

Theorem 2.1 (Optional stopping theorem). Let $\{M_n\}_{n\in\mathbb{N}}$ be a martingale and T is a stopping time respect to filtration $\{\mathscr{F}_n\}_{n\in\mathbb{N}}$. We have that $\mathbb{E}[|M_T|] < \infty$ and $\mathbb{E}M_T = \mathbb{E}[M_0]$ if one of the following holds

- (i) The stopping time T is a.s. bounded; that is, there exists $C \ge 0$ such that $T \le C$ a.s..
- (ii) $T < \infty$ a.s. and $\{M_n\}_{n \in \mathbb{N}}$ is uniformly integrable and $\mathbb{E}[|M_T|] < \infty$.

Remark 2.2. Note that the condition $\mathbb{E}[|M_T|] < \infty$ is redundant. Indeed, by the martingale convergence theorem we know that if $\{M_n\}_{n\in\mathbb{N}}$ is a martingale with $\sup_n \mathbb{E}[|M_n|] < \infty$, then there exists a random variable M_∞ such that $M_n \to M_\infty$ a.s. and $\mathbb{E}[|M_\infty|] < \infty$. Let $\mathbf{M}_n = M_{T \wedge n}$, then we have

$$\sup_{n} \mathbb{E}[|\mathbf{M}_{n}|] \leq \sup_{n} \mathbb{E}[|M_{T \wedge n}|] \leq \sup_{n} \mathbb{E}[|M_{n}|] < \infty.$$

In fact, $\mathbb{E}[M_{T \wedge n}] \leq \mathbb{E}[M_n]$ for $T < \infty$ a.s.. It is obvious that $\{|M_n|\}_{n \in \mathbb{N}}$ is a sub-martingale, define $U_n = |M_n| - |M_{T \wedge n}|$, we can obtain that

$$U_{n+1} - U_n = (|M_{n+1}| - |M_n|) \mathbf{1}_{\{T \le n\}}$$

due to $|M_{T \wedge (n+1)}| - |M_{T \wedge n}| = (M_{n+1} - M_n) \mathbf{1}_{\{T > n\}}$. Therefore,

$$\mathbb{E}[U_{n+1} - U_n] = \mathbf{1}_{\{T \le n\}} \cdot \mathbb{E}[|M_{n+1}| - |M_n| \,|\mathscr{F}_n] \ge 0.$$

It is obvious that $\{\mathbf{M}_n\}_n = \{M_{T \wedge n}\}_n$ is martingale, therefore, we have

$$\mathbf{M}_n \to \mathbf{M}_\infty \ a.s.$$

and $\mathbb{E}[|\mathbf{M}_{\infty}|] < \infty$ (i.e. $\mathbb{E}[M_T] < \infty$ since $T < \infty$ a.s.).

Remark 2.3. The Optional stopping theorem is important, Let $T = \inf\{n : S_n = 1\}$, we can prove that $T < \infty$ a.s. (recurrent), but $S_T = 1$ a.s., $S_0 = 0$, we observe that $\mathbb{E}[S_T] \neq \mathbb{E}[S_0]$.

It is obviously that $\{S_n\}_{n\in\mathbb{N}_+}$ is a martingale. Let $T_z := \inf\{n : S_n = z\}$, then T_z is a stopping time. For a < 0 < b, define stop time $T_{a,b} := T_a \wedge T_b$, which is the first exit time of (a, b). Since $M_n := S_{T_{a,b} \wedge n} \leq |a| \vee |b|$ a.s., and $T_{a,b} < \infty \mathbb{P}_0$ -a.s., we have

$$0 = \mathbb{E}[M_{T_{a,b}}] = \mathbb{P}(T_a < T_b) \cdot a + \mathbb{P}(T_b < T_a) \cdot b = \mathbb{P}(T_a < T_b)(a - b) + b.$$

(where $T_{a,b} < \infty \ a.s.$ is due to that Wald's identities and Dominated convergence theorem) can obtain $\mathbb{E}[T_{a,b}] < \infty$. Therefore,

$$\mathbb{P}_0(T_a < T_b) = \frac{b}{b-a}$$

Note that $i + S_n$ have the distribution of a random walk started at i, Thus, for all $0 \le i \le k$,

$$\mathbb{P}_i(T_0 < T_k) = \mathbb{P}_0(T_{-i} < T_{k-i}) = \frac{k-i}{k}.$$

Note that

$$\mathbb{P}_i(T_0 = \infty) = \lim_{n \to \infty} \mathbb{P}_i(T_n < T_0) = 0,$$

Remark 2.4. We also can prove that $T_{a,b} < \infty$ a.s. by estimating $\mathbb{P}(T_{a,b} > nI)$ where I := b-a. In fact, for any a < x < b,

$$\mathbb{P}(S_{n+I} \notin (a,b) | S_n = x, T_{a,b} > n) \ge \mathbb{P}(\forall \ 0 \le j < I, X_{n+j+1} = 1 | S_n = x, T_{a,b} > n) = 2^{-I}.$$

Since $T_{a,b} > n + I$ implies that $T_{a,b} > n$ and $S_{n+I} \in (a,b)$, therefore, we have

$$\mathbb{P}(T_{a,b} > n+I) = \sum_{x=a+1}^{b-1} \mathbb{P}(T_{a,b} > n+I|S_n = x, T_{a,b} > t) \cdot \mathbb{P}(S_n = x, T_{a,b} > n) \le (1-2^{-I}) \cdot \mathbb{P}(T_{a,b} > n)$$

Inductively, we have

$$\mathbb{P}(T_{a,b} > nI) \le (1 - 2^{-I})^n.$$

3 Borel-Cantelli Lemma and almost sure convenience

The proofs of almost all strong theorem are based on different forms of the Borel-Cantelli Lemma and those of the Markov inequality. The main idea of Borel-Cantelli Lemma is to construct a series to control the probability of evens.

Lemma 3.1. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(\limsup_{n \to \infty} A_n) := \mathbb{P}(A_n \ i.o.) = 0$.

Proof. Define general r.v. $\xi := \sum_{n=1}^{\infty} \mathbf{1}_{A_n}$, it is obvious ξ is not negative. By $\mathbb{E}[\xi] = \sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, we have $\xi < \infty$ a.s., which is due to

$$\mathbb{P}(\xi = \infty) \le \mathbb{P}(\xi \ge N) \le \frac{1}{N}\mathbb{E}[\xi].$$

By $\xi < \infty$ a.s., we have $\mathbb{P}(A_n \ i.o.) = 0$.

Proof.

$$\mathbb{P}(\limsup_{n \to \infty} A_n) = \lim_{n \to \infty} \mathbb{P}(\bigcup_{k \ge n} A_k) \le \lim_{n \to \infty} \sum_{k=n}^{\infty} \mathbb{P}(A_k) = 0.$$

Corollary 3.2. If

- (i) $\sum_{n=1}^{\infty} \mathbb{P}(A_n | B_n) < \infty$,
- (ii) B_n occurs a.s. if n is large enough,

then A_n occurs a.s. only finitely many times.

Proof. By Lemma 3.1, we have

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n \cap B_n) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n | B_n) \mathbb{P}(B_n) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n | B_n).$$

Therefore, $A_n B_n$ occurs a.s. finitely many times. By (*ii*), we complete the proof since $B_n = \Omega$ if n is large enough.

The converse of the Borel-Cantelli lemma is trivially false.

Example 3.3. Let $\Omega = (0,1)$, $\mathcal{F} = \mathscr{B}((0,1))$ and $\mathbb{P} = \lambda$. If $A_n = (0,a_n)$ where $a_n \to 0$ as $n \to \infty$, then $\limsup A_n = \emptyset$, but if $a_n = \frac{1}{n}$, we have $\sum a_n = \infty$.

Lemma 3.4. Let $S_n := \sum_{k=1}^n X_k$, where $X_k \ge 0$. If $\mathbb{E}[S_n] \to \infty$, $\sup_{n\ge 1} \mathbb{E}[X_n] < \infty$ and we can find $C, \delta > 0$ such that for any $n \in \mathbb{N}_+$,

$$\mathbf{Var}(S_n) \le C \cdot (\mathbb{E}[S_n])^{2-\delta} \tag{1}$$

then

$$\lim_{n \to \infty} \frac{S_n}{\mathbb{E}[S_n]} = 1 \ a.s..$$

Proof. We can assume $0 < M := \sup_{n \ge 1} \mathbb{E}[X_n] \le 1$. Note that $0 \le \mathbb{E}[X_n] \le 1$ and $\mathbb{E}[S_n] \to \infty$, it is easy to see the integer part of $\{E(n) := \mathbb{E}[S_n]\}_{n \ge 1}$ can take all natural numbers. Therefore, we can find a subsequence $\{n_k\}_{k \ge 1}$, such that

$$k^{\frac{2}{\delta}} \le E(n_k) \le k^{\frac{2}{\delta}} + 1, \quad \forall k \ge 1.$$

By Markov's inequality, and (1), we have

$$\mathbb{P}\left(\left|\frac{S_{n_k}}{E(n_k)} - 1\right| \ge \varepsilon\right) \le \frac{\operatorname{Var}(S_{n_k})}{\varepsilon^2 \cdot E(n_k)^2} \le \frac{C}{\varepsilon^2 \cdot k^2}, \quad \forall k \ge 1, \varepsilon > 0.$$

By Borel-Cantelli's lemma, we have

$$\lim_{k \to \infty} \frac{S_{n_k}}{E(n_k)} = 1 \ a.s..$$

For n large enough, there exists k large enough such that $n \in [n_k, n_{k+1})$. In this time, utilize the monotonicity of S_n and E(n), we have

$$\frac{E(n_k)}{E(n_{k+1})} \cdot \frac{S_{n_k}}{E(n_k)} \le \frac{S_n}{E(n)} \le \frac{E(n_{k+1})}{E(n_k)} \cdot \frac{S_{n_{k+1}}}{E(n_{k+1})}.$$

Since $\frac{E(n_{k+1})}{E(n_k)} \to 1$ when $k \to \infty$, we complete the proof.

Lemma 3.5. If $\{A_n\}_{n\geq 1}$ are independent evens, then

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \Rightarrow \mathbb{P}(A_n \ i.o.) = 1.$$

Proof. Since $\mathbb{P}(\liminf_{n\to\infty} A_n) = \lim_{n\to} \mathbb{P}(\bigcup_{k\geq n} A_k^c)$, by the independence of $\{A_n\}_{n\geq 1}$, we have

$$\mathbb{P}(\bigcap_{k=n}^{m} A_k^c) = \prod_{k=n}^{m} \mathbb{P}(A_k^c) = (1 - \mathbb{P}(A_k)) \le \prod_{k=n}^{m} \exp(-\mathbb{P}(A_k)) = \exp\left(-\sum_{k=n}^{m} \mathbb{P}(A_k)\right) \to 0 (m \to \infty).$$

Therefore,

$$\mathbb{P}(\liminf_{n} A_{n}^{c}) = \lim_{n \to \infty} \mathbb{P}(\cap_{k=n}^{\infty} A_{k}^{c}) = \lim_{n \to \infty} \lim_{m \to \infty} \mathbb{P}(\cap_{k=n}^{m}) = 0.$$

In the following, we use Corollary 3.4 to prove

Lemma 3.6. If $\{A_n\}_{n\geq 1}$ are pairwise independent evens, then

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \Rightarrow \mathbb{P}(A_n \ i.o.) = 1.$$

Proof. Let $S_n := \sum_{k=1}^n \mathbf{1}_{A_k}$, we compute the variation of S_n , for any $n \in \mathbb{N}_+$,

$$\begin{aligned} \mathbf{Var}(S_n) &= \sum_{k=1}^n \mathbf{Var}(\mathbf{1}_{A_k}) + 2 \sum_{1 \le i < j \le n} \mathbf{Cov}(\mathbf{1}_{A_i}, \mathbf{1}_{A_j}) \\ &= \sum_{k=1}^n \mathbb{P}(A_k) - \sum_{k=1}^n \mathbb{P}^2(A_k) \le \mathbb{E}[S_n]. \end{aligned}$$

Due to $\mathbb{E}[S_n] \to \infty$, by Corollary 3.4, we have $S_n \to \infty$ a.s..

Proof. We only need to prove $\mathbb{P}(S_{\infty} \leq a) = 0 \ \forall a > 0$. For any a > 0, take $N \geq 1$ large enough, such that $\mathbb{E}[S_N] \geq a$. Then for any $n \geq N$, we have

$$\mathbb{P}(S_{\infty} \leq a) \leq \mathbb{P}(S_n \leq a)$$

$$\leq \mathbb{P}(-(S_n - \mathbb{E}[S_n]) \geq \mathbb{E}[S_n] - a)$$

$$\leq \frac{\mathbb{E}[|S_n - \mathbb{E}[S_n]|^2]}{|\mathbb{E}[S_n] - a|^2} = \frac{\operatorname{Var}(S_n)}{|\mathbb{E}[S_n] - a|^2}$$

$$\leq \frac{\mathbb{E}[S_n]}{|\mathbb{E}[S_n] - a|^2} \to 0,$$

when $n \to \infty$, since $\mathbb{E}[S_n] \to \infty$.

Lemma 3.7. Let $A_1, A_2, cdots$ be a sequence of evens for which

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty,$$

and

$$\liminf_{n \to \infty} \frac{\sum_{k=1}^{n} \sum_{i=1}^{n} \mathbb{P}(A_k A_i)}{\left(\sum_{k=1}^{n} \mathbb{P}(A_k)\right)^2} \le C \quad (C \ge)$$

then

 $\mathbb{P}(\limsup_{n \to A_n}) \ge C^{-1}.$

The ideas to prove a.s. convergence by Borel-Cantelli lemma:

Lemma 3.8. Let $\{T_n\}_{n\geq 1}$ be r.v. such that

$$\sum_{n=1}^{\infty} \mathbb{P}(|T_n| > \varepsilon) < \infty$$

for each $\varepsilon > 0$. Then $T_n \to 0$ a.s..

Proof. For each $k \ge 1$,

$$\sum_{n=1}^{\infty} \mathbb{P}(|T_n| > 2^{-k}) < \infty$$

Hence, by the Borel-Cantelli lemma (use $[\limsup_n A_n]^c$), for each $k \ge 1$, $|T_n| \le 2^{-k}$ for all n sufficiently large, except on a null event N_k . It follows that

$$T_n(\omega) \to 0$$
 for all $\omega \notin \bigcup_{k=1}^{\infty} N_k$

Since $\cup_{k=1}^{\infty} N_k$ is a null event, $T_n \to 0$ a.s. follows.

Lemma 3.9. Let $\{T_n\}_{n\geq 1}$ be r.v. such that

$$\sum_{n=1}^\infty \mathbb{P}(|T_n| > \varepsilon_n) < \infty$$

for positive constant $\varepsilon_n \to 0$. Then $T_n \to 0$ a.s..

Proof. Applying Borel-Cantelli lemma to events $\{|T_n| > \varepsilon_n\}, n \ge 1$.

We need to estimate $\mathbb{P}(|T_n| > \varepsilon)$, it just the Chebyshev inequality

$$\mathbb{P}(|X| > \varepsilon) \le \mathbb{E}[|X|]/\varepsilon$$
$$\mathbb{P}(|X - \mathbb{E}[X]| > \varepsilon) \le \mathbf{Var}(X)/\varepsilon^2$$

and

$$\mathbb{P}(X > \varepsilon) \le \exp(-t\varepsilon)\mathbb{E}[\exp(tX)]$$

for each $\varepsilon > 0$ and real t.

The ideas to prove a.s. convergence. The moment estimate also is useful.

Lemma 3.10. Suppose that

$$\sum_{n=1}^{\infty} \mathbb{E}[|T_n|^p] < \infty,$$

for some p > 0, then $T_n \to 0$ a.s..

Proof. By $\sum_{n=1}^{\infty} \mathbb{E}[|T_n|^p] < \infty$, we have $\mathbb{E}[\sum_{n=1}^{\infty} |T_n|^p] < \infty$. Moreover, $\sum_{n=1}^{\infty} |T_n|^p < \infty$ a.s. and hence that $T_n \to 0$ a.s..

The ideas to prove a.s. convergence by extracting subsequence.

Lemma 3.11. Let $\{X_n\}_{n\geq 1}$ is r.v. sequence, if there exists a subsequence $\{n_k\}_{k\geq 1}$ such that

$$X_{n_k} \to X \ a.s.$$

and

$$\max_{n_{k-1} < n \le n_k} |X_n - X_{n_{k-1}}| \to 0 \ a.s..$$

Then,

$$X_n \to X \ a.s..$$

Proof. For n large enough, there exist a unique k such $n_{k-1} < n \leq n_k$, then

$$|X_n - X| \le |X_{n_{k-1}} - X| + \max_{n_{k-1} < m \le n_k} |X_m - X_{n_{k-1}}| \to 0 \ a.s..$$

Theorem 3.12.

$$\lim_{n \to \infty} \frac{S_n}{n} = 0 \quad a.s.. \tag{2}$$

Proof. Since $\mathbb{E}[\frac{S_n}{n}] = 0$ and $\mathbb{E}[\frac{S_n^2}{n^2}] = \frac{1}{n}$, by Chebyshev inequality, for any $\varepsilon > 0$, we have

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| \ge \varepsilon\right) \le \frac{1}{n\varepsilon^2},$$

Therefore, we have $\frac{S_{n^2}}{n^2} \to 0$ a.s. when $n \to \infty$. Now we have to estimate the value of S_k for the k lying in the gap. If $n^2 \le k < (n+1)^2$, then

$$\left| \frac{S_k}{k} \right| = \left| \frac{S_{n^2} n^2}{k n^2} + \frac{S_k - S_{n^2}}{k} \right|$$

$$\leq \left| \frac{S_{n^2}}{n^2} \right| + \left| \frac{k - n^2}{k} \right| \leq \left| \frac{S_{n^2}}{n^2} \right| + \left| \frac{(n+1)^2 - n^2}{k} \right| \to 0 \quad a.s..$$

Proof. Using $f(t) := \mathbb{E}[e^{tS_n}] = \left(\frac{e^{t+e^{-t}}}{2}\right)^n$, $\mathbb{E}[S_n^4] = f^{(4)}(t)|_{t=0}$. We have

$$\mathbb{E}\left[\frac{S_n^4}{n^4}\right] = n^{-3} + 6C_n^2 n^{-4} = O(n^{-2}).$$

By Theorem 3.10, we complete the proof.

Remark 3.13. By Bernstein inequality,

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| \ge \varepsilon\right) \le 2\exp\left(-\frac{2n\varepsilon^2}{(1+2\varepsilon)^2}\right),\,$$

it is obvious that (2) holds true.

4 Between LLN and LIL

By (2), we have $|S_n| = o(n) \ a.s.$, it is natural to ask whether a better rate can obtained, in fact we have.

Theorem 4.1. For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{S_n}{n^{\frac{1}{2} + \varepsilon}} = 0 \ a.s.$$

Proof. For any a position integer, by $\mathbb{E}[S_n^{2K}] = f^{(2K)}(t)|_{t=0}$, we have

$$\mathbb{E}[S_n^{2K}] = O(n^K).$$

Note that for $2\varepsilon K > 1$, we have

$$\mathbb{E}\left[\left|\frac{S_n^{2K}}{n^{K+2\varepsilon K}}\right|\right] \lesssim \frac{1}{n^{2\varepsilon K}}$$

By Lemma 3.10, we complete the proof.

By Borel-Cantelli lemma, we can obtain

Theorem 4.2.

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{\frac{1}{2}} \log n} \le 1 \ a.s..$$

Proof. By $\mathbb{E}[e^{tS_n}] = \left(\frac{e^t + e^{-t}}{2}\right)^n$, we have

$$\mathbb{E}\left[\exp\left(n^{-\frac{1}{2}}S_n\right)\right] \to e^{1/2}.$$

Hence,

$$\mathbb{P}(S_n \ge (1+\varepsilon)n^{\frac{1}{2}}\log n) = \mathbb{P}\left(\exp(n^{-\frac{1}{2}}S_n) \ge n^{1+\varepsilon}\right) \lesssim \frac{1}{n^{1+\varepsilon}}$$

Moreover,

$$\limsup_{n \to \infty} \frac{S_n}{n^{\frac{1}{2}} \log n} \le 1 \ a.s..$$

By the symmetry of S_n i.e. S_n equal to $-S_n$ in law, we complete the proof.

Theorem 4.3. For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{\mathbf{S}_n}{\sqrt{n(\log n)^{1+\varepsilon}}} = 0 \ a.s..$$

Proof. First, we prove Kolmogorov's maximal inequality. Let X_1, X_2, \cdots be independent, meanzero and $\mathbb{E}[X_k^2] < \infty \ \forall k \in \mathbb{N}_+$. Then

$$\mathbb{P}\left(\sup_{1\leq k\leq n}|S_k|>\lambda\right)\leq \frac{\mathbb{E}[S_n^2]}{\lambda^2}=\frac{1}{\lambda^2}\sum_{k=1}^n \mathbf{Var}(X_k).$$

We partition $A^* := \{ \sup_{1 \le k \le n} S_n > \lambda \}$ into the events $A_k := \{ |S_k| > \lambda \text{ and } |S_j| \le \lambda \text{ for all } j < k \}$, then we have

$$\mathbb{E}[S_n^2] \ge \mathbb{E}[S_n^2 \mathbf{1}_{A^*}] = \sum_{k=1}^n \mathbb{E}[S_n^2 \mathbf{1}_{A_k}]$$

$$= \sum_{k=1}^n \left(\mathbb{E}[S_k^2 \mathbf{1}_{A_k}] + 2\mathbb{E}[S_k(S_n - S_k) \mathbf{1}_{A_k}] + \mathbb{E}[(S_n - S_k)^2 \mathbf{1}_{A_k}] \right)$$

$$\ge \sum_{k=1}^n \mathbb{E}[S_k^2 \mathbf{1}_{A_k}] \ge \sum_{k=1}^n \lambda^2 \mathbb{P}(A_k) = \lambda^2 \mathbb{P}(A^*).$$

Second, let X_1, X_2, \cdots be independent, mean-zero and $\mathbb{E}[X_k^2] < \infty \ \forall k \in \mathbb{N}_+$, then

$$\sum_{i=1}^{\infty} \mathbf{Var}(X_i) < \infty \Rightarrow \sum_{i=1}^{\infty} X_i < \infty \ a.s..$$

By the assumptions about $\{X_i\}_{i\geq 1}$, we see $\{S_n\}_{n\geq 1}$ is a the Cauthy sequence in $L^2(\Omega)$ space. Therefore, there exist a $S_{\infty} \in L^2(\Omega)$ such that $S_n \to S_{\infty}$ in $L^2(\Omega)$. Moreover, there exist a subsequence $\{n_k\}_{k\geq 1}$ such that $S_{n_k} \to S_{\infty}$ a.s...

For any $k \ge 0$ (let $n_0 := 0, S_0 = 0$), by Kolmogorov inequality, we have

$$\mathbb{P}\left(\max_{n_k$$

Note that

$$\sum_{k=1}^{\infty} \mathbb{E}[\left|S_{n_{k+1}} - S_{n_k}\right|^2] = \sum_{n=1}^{\infty} \mathbb{E}[X_n^2] < \infty.$$

By Borel-Cantelli lemma, we obtain that

$$\max_{n_k$$

Combining $S_{n_k} \to S_{\infty}$ a.s., we can obtain $S_n \to S_{\infty}$ a.s., which called **Extract Subsequence** Method. In fact, for n large enough, there exists a unique k large enough such that $n_{k-1} < n \leq n_k$, then

$$|S_n - S_\infty| \le |S_{n_{k-1}} - S_\infty| + \max_{n_{k-1} < m \le n_k} |S_m - S_{n_{k-1}}| \to 0 \ a.s..$$

Kronecker's lemma Let $\{a_n\}_{n\geq 1}$ is a sequence of real number, and suppose $b_n \uparrow \infty$. If $\sum_i \frac{a_i}{b_i} < \infty$, then $\frac{\sum_{k=1}^n a_k}{b_n} \to 0$.

Finally, let $a_n = \mathbf{X}_n(\omega)$ and $b_n = \sqrt{n(\log n)^{1+\varepsilon}} \uparrow \infty$, it suffices to show that

$$\sum_{k=1}^{\infty} \frac{\mathbf{X}_k}{\sqrt{n(\log n)^{1+\varepsilon}}} < \infty \ a.s..$$

We only need to check

$$\sum_{i=1}^{\infty} \mathbf{Var}\left(\frac{\mathbf{X}_k}{\sqrt{n(\log n)^{1+\varepsilon}}}\right) = \sum_{i=1}^{\infty} \frac{\mathbf{Var}(\mathbf{X}_k)}{n(\log n)^{1+\varepsilon}} = \sum_{i=1}^{\infty} \frac{1}{n(\log n)^{1+\varepsilon}} < \infty.$$

Let $f(x) = \frac{1}{x(\log x)^{\alpha}}$, for x large enough, we have f(x) > 0 and f is a monotonically decreasing continuous function about x. Define $F(x) = \log \log x$ if $\alpha = 1$, $F(x) = \frac{1}{1-\alpha}(\log x)^{1-\alpha}$ if $\alpha \neq 1$, then we have F'(x) = f(x) for x large enough. Therefore,

$$\int_{N}^{\infty} f(x) dx = \begin{cases} \infty, & \text{if } \alpha \ge 1, \\ \frac{1}{\alpha - 1} (\log N)^{1 - \alpha}, & \text{if } \alpha > 1. \end{cases}$$

Similarly, we can obtain that for any $\varepsilon > 0, k \in \mathbb{N}_+$

$$\lim_{n \to \infty} \frac{\mathbf{S}_n}{\sqrt{n \log n \log^{(2)} n \cdots (\log^{(k)} n)^{1+\varepsilon}}} = 0 \ a.s..$$

The best possible rate was obtained by Khinchine which is called Law of Iterated Logarithm,

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1 \ a.s..$$

Lemma 4.4. For any positive integer N, we have

$$\mathbb{P}\left(S_n \ge k\right) \le e^{-\frac{k^2}{2n}}$$

Proof. Since

$$\mathbb{P}(S_n \ge k) \le \frac{\mathbb{E}[e^{tS_n}]}{e^{tk}} = \frac{\left(\mathbb{E}[e^{tX_1}]\right)^n}{e^{tk}}$$

and

$$\mathbb{E}[e^{tX_1}] = \frac{e^t + e^{-t}}{2} \le e^{\frac{t^2}{2}}.$$

By taking $t = \frac{k}{n}$, we have

$$\mathbb{P}\left(S_n \ge k\right) \le \frac{e^{\frac{nt^2}{2}}}{e^{tk}} = e^{-\frac{k^2}{2n}}.$$

Lemma 4.5 (Reflection principle). For any positive integer m, we have

$$\mathbb{P}(M_n^+ \ge m, S_n = s) = \begin{cases} \mathbb{P}(S_n = s), & \text{if } s \ge m, \\ \mathbb{P}(S_n = 2m - s), & \text{if } s < m, \end{cases}$$

and

$$\mathbb{P}(M_n^+ \ge m) = \mathbb{P}(S_n \ge m) + \sum_{s=-\infty}^{m-1} \mathbb{P}(S_n = 2m - s) = \mathbb{P}(S_n = m) + \sum_{k=m+1}^{\infty} 2\mathbb{P}(S_n = k)$$

 $and \ thus$

$$\mathbb{P}(M_n^+ \ge m) = 2\mathbb{P}(S_n \ge m+1) + \mathbb{P}(S_n = m) \le 2\mathbb{P}(S_n \ge m).$$

Lemma 4.6.

$$\mathbb{P}(S_n = k) \sim \frac{e^{-\frac{k^2}{2n}}}{\sqrt{\pi n}}.$$

Proof. Recall Stirling's approximation

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Then, we have

$$\mathbb{P}(S_{2n} = 2k) = \frac{(2n)!}{(n+k)!(n-k)!} 2^{-2n}$$

$$\sim \frac{1}{\sqrt{\pi n}} \frac{1}{\left(1+\frac{k}{n}\right)^{n+k} \left(1-\frac{k}{n}\right)^{n-k}} \frac{1}{\sqrt{\left(1+\frac{k}{n}\right) \left(1-\frac{k}{n}\right)}}$$

$$= \frac{1}{\sqrt{\pi n}} \frac{\left(1-\frac{k}{n}\right)^{k}}{\left(1-\frac{k^{2}}{n^{2}}\right)^{n+\frac{1}{2}} \left(1+\frac{k}{n}\right)^{k}}$$

Note that we need $(n-k) \to \infty$ to use Stirling's formula. We choose $k = \lfloor x \sqrt{\frac{n}{2}} \rfloor$ so that $\frac{2k}{\sqrt{2n}} \to x$. It is not hard to see that if $x_n \to 0$, and $y_n \to \infty$ such that $x_n y_n \to t$, then $(1+x_n)^{y_n} \to e^t$. Therefore,

$$\mathbb{P}(S_{2n} = 2k) \sim \frac{1}{\sqrt{\pi n}} \left(1 - \frac{x^2}{2n}\right)^{-n} \left(1 - \frac{x}{\sqrt{2n}}\right)^{x\frac{\sqrt{n}}{\sqrt{2}}} \left(1 + \frac{x}{\sqrt{2n}}\right)^{-x\frac{\sqrt{n}}{\sqrt{2}}} \to \frac{1}{\sqrt{\pi n}} e^{-\frac{x^2}{2}}.$$

Lemma 4.7. Let $k > n^{\frac{1}{2}}$, then there exist a constant C such that

$$\mathbb{P}(S_n \ge k) \ge C \cdot \frac{n^{\frac{1}{2}}}{k} e^{-\frac{k^2}{2n}}.$$

Proof. It is easy to see

$$\mathbb{P}(S_n \ge k) \ge \mathbb{P}(k \le S_n \le k + \frac{n}{k}) \ge C \cdot n^{-\frac{1}{2}} \sum_{m=k}^{k+\frac{n}{k}} e^{-\frac{m^2}{2n}}$$

For $k \leq m \leq k + \frac{n}{k}$, we have

$$e^{-\frac{k^2}{2n}} \ge e^{-\frac{m^2}{2n}} \ge e^{-\frac{(k+\frac{n}{k})^2}{2n}} = \exp\left(-\frac{k^2}{2n} - 1 - \frac{n}{2k^2}\right) \ge C \cdot e^{-\frac{k^2}{2n}}.$$

Therefore, we have

$$\mathbb{P}(S_n \ge k) \ge C \cdot \frac{n^{\frac{1}{2}}}{k} e^{-\frac{k^2}{2n}}.$$

Theorem 4.8. Define $F_n := \sqrt{2n \log \log n}$, then we have

$$\limsup_{n \to \infty} \frac{S_n}{F_n} = 1 \ a.s..$$

Proof. The proof will be presented in two steps. The first one gives an upper bound of $\limsup_{n\to\infty}\frac{S_n}{F_n}$, i.e. for any $\varepsilon > 0$, we show that

$$\limsup_{n \to \infty} \frac{S_n}{F_n} \le 1 + \varepsilon \ a.s..$$

The second one gives a lower bound of $\limsup_{n\to\infty} \frac{S_n}{F_n}$, i.e. for $0 < \varepsilon < \frac{1}{2}$,

$$\limsup_{n \to \infty} \frac{S_n}{F_n} \ge 1 - \varepsilon \ a.s..$$

Step 1. Let $\Theta > 1$, $n_k := \lfloor \Theta^k \rfloor$, by reflection principle and Lemma 4.4, we have

$$\mathbb{P}\left(M_{n_{k}}^{+} \ge (1+\varepsilon)F_{n_{k}}\right) \le 2\mathbb{P}\left(S_{n_{k}} \ge (1+\varepsilon)F_{n_{k}}\right)$$
$$\le 2\exp\left(-\frac{(1+\varepsilon)^{2}F_{n_{k}}^{2}}{2n_{k}}\right)$$
$$= 2\exp\left(-(1+\varepsilon)^{2}\log\log n_{k}\right) \sim (k\log\Theta)^{-(1+\varepsilon)^{2}}$$

By Borel-Cantelli lemma, we have

$$M_{n_k}^+ \le (1+\varepsilon)F_{n_k} \ a.s.,$$

for all but finitely many k.

Let $n_k \leq n < n_{k+1}$,

$$\frac{S_n}{F_n} \le \frac{M_n^+}{F_n} = \frac{M_{n_{k+1}}^+}{F_{n_{k+1}}} \frac{F_{n_{k+1}}}{F_n} \frac{M_n^+}{M_{n_{k+1}}^+} \le (1+\varepsilon) \frac{F_{n_{k+1}}}{F_n} \le 1+2\varepsilon \ a.s.,$$

where $\Theta(\varepsilon, k)$ is close enough to 1.

Step 2. Define $\mathbf{n}_k = n_{k+1} - n_k$, by the definition of $\{S_n\}_{n\geq 1}$, we have $\{S_{n_{k+1}} - S_{n_k}\}_{k\geq 1}$ is mutually independent, $S_{\mathbf{n}_k}$ and $S_{n_{k+1}} - S_{n_k}$ are equal in law. By Lemma 4.6, for large $k(\varepsilon)$ enough, we have

$$\mathbb{P}\left(S_{\mathbf{n}_{k}} = S_{n_{k+1}} - S_{n_{k}} \ge (1-\varepsilon)F_{\mathbf{n}_{k}}\right) \ge C \cdot \frac{\mathbf{n}_{k}^{\frac{1}{2}}}{(1-\varepsilon)F_{\mathbf{n}_{k}}} \exp\left(-\frac{(1-\varepsilon)^{2}F_{\mathbf{n}_{k}}^{2}}{2\mathbf{n}_{k}}\right)$$
$$\sim \frac{1}{\sqrt{\log\log \mathbf{n}_{k}}} (\log \mathbf{n}_{k})^{-(1-\varepsilon)^{2}}$$

where the last sim is due to $0 < \varepsilon < \frac{1}{2}$. Note that $\log \mathbf{n}_k \sim k$, we have $\sum_{k=1}^{\infty} \mathbb{P}(S_{\mathbf{n}_k} \geq (1-\varepsilon)F_{\mathbf{n}_k}) = \infty$, by Borel-Cantelli lemma, we have

$$S_{n_{k+1}} \ge S_{n_k} + (1-\varepsilon)F_{\mathbf{n}_k} \quad i.o. \ a.s..$$

By the symmetric of the upper bound, we have

$$\liminf_{k\to\infty} \frac{S_{n_k}}{F_{n_k}} \ge \liminf_{n\to\infty} \frac{S_n}{F_n} \ge -(1+\varepsilon) \ a.s..$$

Therefore, we have

$$\begin{split} \frac{S_{n_{k+1}}}{F_{n_{k+1}}} &\geq \frac{S_{n_k}}{F_{n_k}} \frac{F_{n_k}}{F_{n_{k+1}}} + (1-\varepsilon) \frac{F_{\mathbf{n}_k}}{F_{n_{k+1}}} \\ &\geq -(1+\varepsilon) \frac{F_{n_k}}{F_{n_{k+1}}} + (1-\varepsilon) \frac{F_{\mathbf{n}_k}}{F_{n_{k+1}}} \to -\frac{(1+\varepsilon)}{\Theta^{\frac{1}{2}}} + (1-\varepsilon) \left(\frac{\Theta-1}{\Theta}\right)^{\frac{1}{2}}. \end{split}$$

Take $\varepsilon \to 0^+$ and $\Theta \to \infty$, we complete the proof.

Using almost the same method, we can prove the result about Brownian motion. For the convenience of the readers, we provide the detailed proof.

Theorem 4.9. For a Brownian motion B in \mathbb{R} , we have

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log t}} = 1 \ a.s..$$

Proof. when $u \to \infty$, we have

$$\int_{u}^{\infty} e^{-\frac{1}{2}} dx \sim u^{-1} \int_{u}^{\infty} x e^{-\frac{x^{2}}{2}} = u^{-1} e^{-\frac{u^{2}}{2}}.$$

In fact,

$$\int_{u}^{\infty} \frac{1}{x} (xe^{-\frac{x^2}{2}}) \, dx = \int_{u}^{\infty} \frac{1}{x} d(e^{-\frac{x^2}{2}}) = \left. \frac{1}{x} e^{-\frac{x^2}{2}} \right|_{0}^{\infty} - \int_{u}^{\infty} \frac{1}{x^2} e^{-\frac{x^2}{2}} \, dx.$$

Let $M_t^+ = \sup_{0 \le s \le t} B_s$, then by reflection principle, we have

$$\mathbb{P}(M_t^+ > ut^{\frac{1}{2}}) = 2\mathbb{P}(B_t > ut^{\frac{1}{2}}) \sim \frac{2}{\sqrt{2\pi}}u^{-1}e^{-\frac{u^2}{2}}.$$

Step 1. Define $F_t = \sqrt{2t \log \log t}$, for any $\Theta > 1$ and $1 + \varepsilon > 1$, for *n* large enough, we have

$$\mathbb{P}(M_{\Theta^n}^+ > (1+\varepsilon)F_{\Theta^n})$$

$$\leq 2\mathbb{P}\left(\frac{B_{\Theta^n}}{\sqrt{\Theta^n}} > \frac{(1+\varepsilon)F_{\Theta^n}}{\sqrt{\Theta^n}}\right)$$

$$\lesssim \sqrt{\frac{\Theta^n}{(1+\varepsilon)^2 F_{\Theta^n}^2}} \exp\left(-\frac{1}{2}\frac{(1+\varepsilon)^2 F_{\Theta^n}^2}{\Theta^n}\right)$$

$$\lesssim \frac{1}{\sqrt{\log\log\Theta^n}} \exp\left(-(1+\varepsilon)^2 \log\log\Theta^n\right) \sim (n\log\Theta)^{-(1+\varepsilon)^2}.$$

By the Borel-Cantelli lemma, we obtain that for n large enough,

$$\frac{M_{\Theta^n}^+}{F_{\Theta^n}} \le (1+\varepsilon) \ a.s..$$

Therefore, for $\Theta^n \leq t < \Theta^{n+1}$, Θ approach 1,

$$\frac{B_t}{F_t} \leq \frac{M_t^+}{F_t} = \frac{M_{\Theta^{n+1}}^+}{F_{\Theta^{n+1}}} \frac{F_{\Theta^{n+1}}}{F_t} \frac{M_t^+}{M_{\Theta^{n+1}}^+} \leq (1+\varepsilon) \frac{F_{\Theta^{n+1}}}{F_t} \leq 1+2\varepsilon \ a.s..$$

Step 2. For $0 < \varepsilon < \frac{1}{2}$, we have

$$\mathbb{P}\left(B_{\Theta^{n+1}} - B_{\Theta^n} > (1-\varepsilon)F_{[\Theta^{n+1} - \Theta^n]}\right) \ge C \cdot \frac{(\Theta^{n+1} - \Theta^n)^{\frac{1}{2}}}{F_{[\Theta^{n+1} - \Theta^n]}} \exp\left(-\frac{(1-\varepsilon)^2 F_{[\Theta^{n+1} - \Theta^n]}^2}{2(\Theta^{n+1} - \Theta^n)}\right)$$
$$\sim \frac{1}{\sqrt{\log\log(\Theta^{n+1} - \Theta^n)}} \left(\log(\Theta^{n+1} - \Theta^n)\right)^{-(1-\varepsilon)^2}$$

Since $\log(\Theta^{n+1} - \Theta^n) \sim n$, we have

$$\sum_{n=1}^{\infty} \mathbb{P}\left(B_{\Theta^{n+1}} - B_{\Theta^n} > (1-\varepsilon)F_{[\Theta^{n+1} - \Theta^n]}\right) < \infty.$$

By Borel-Cantelli lemma, we have

$$B_{\Theta^{n+1}} \ge B_{\Theta^n} + (1-\varepsilon)F_{[\Theta^{n+1}-\Theta^n]} \quad i.o. \ a.s..$$

By the symmetric of the upper bound, we have

$$\liminf_{n \to \infty} \frac{B_{\Theta^n}}{F_{\Theta^n}} \ge \liminf_{t \to \infty} \frac{B_t}{F_t} \ge -(1 + \varepsilon) \ a.s..$$

Therefore, we have

$$\frac{B_{\Theta^{n+1}}}{\Theta^{n+1}} \ge B_{\Theta^n} + (1-\varepsilon)F_{[\Theta^{n+1}-\Theta^n]} \quad i.o. \ a.s..$$

$$\frac{B_{\Theta^{n+1}}}{\Theta^{n+1}} \ge \frac{B_{\Theta^n}}{F_{\Theta^n}}\frac{F_{\Theta^n}}{F_{\Theta^{n+1}}} + (1-\varepsilon)\frac{F_{[\Theta^{n+1}-\Theta^n]}}{F_{\Theta^{n+1}}}$$

$$\ge -(1+\varepsilon)\frac{F_{\Theta^n}}{F_{\Theta^{n+1}}} + (1-\varepsilon)\frac{F_{[\Theta^{n+1}-\Theta^n]}}{F_{\Theta^{n+1}}} \to -\frac{(1+\varepsilon)}{\Theta^{\frac{1}{2}}} + (1-\varepsilon)\left(\frac{\Theta-1}{\Theta}\right)^{\frac{1}{2}}.$$

Take $\varepsilon \to 0^+$ and $\Theta \to \infty$, we complete the proof.