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1 G(x) = H(x)

We give the proof about G(x) = H(x).∫ x

−x

+∞∑
k=−∞

(−1)k exp

(
−1

2
(u− 2kx)2

)
du =

+∞∑
k=−∞

(−1)k
∫ (2k+1)x

(2k−1)x
e−

1
2
u2

du

=

∫ +∞

−∞

+∞∑
k=−∞

(−1)k1[(2k−1)x,(2k+1)x](u)e
− 1

2
u2

du.

It is obvious that
∑+∞

k=−∞(−1)k1((2k−1)x,(2k+1)x)(u) is a 4x-periodic function and is even(consider
function graph).

+∞∑
k=−∞

(−1)k1((2k−1)x,(2k+1)x)(u) = a0 +
+∞∑
n=1

an cos

(
2nπ

4x
u

)
,

where
a0 =

1

4x

∫ 2x

−2x

(
−1(−2x,−x)(u) + 1(−x,x)(u)− 1(x,2x)(u)

)
du = 0

and
an =

2

4x

∫ 2x

−2x

(
−1(−2x,−x)(u) + 1(−x,x)(u)− 1(x,2x)(u)

)
· cos

(
2nπ

4x
u

)
du

=
4

nπ
sin

(
1

2
nπ

)
.

Therefore,

+∞∑
k=−∞

(−1)k1((2k−1)x,(2k+1)x)(u) =
+∞∑
n=1

4

nπ
sin

(
1

2
nπ

)
cos

(
2nπ

4x
u

)

=
4

π

+∞∑
k=0

1

n
sin

(
1

2
(2k + 1)π

)
cos

(
(2k + 1)π

2x
u

)

=
4

π

∞∑
k=0

(−1)k

2k + 1
cos

(
(2k + 1)π

2x
u

)
.
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Now, we have
1√
2π

∫ x

−x

+∞∑
k=−∞

(−1)k exp

(
−1

2
(u− 2kx)2

)
du

=

∫ +∞

−∞

4

π

∞∑
k=0

(−1)k

2k + 1
cos

(
(2k + 1)π

2x
u

)
· 1√

2π
e−

1
2
u2

du

=E

[
4

π

∞∑
k=0

(−1)k

2k + 1
cos

(
(2k + 1)π

2x
X

)]

=
4

π

∞∑
k=0

(−1)k

2k + 1
E
[
cos

(
(2k + 1)π

2x
X

)]
where X ∼ N(0, 1). Note that

E
[
cos

(
(2k + 1)π

2x
X

)
+ i sin

(
(2k + 1)π

2x
X

)]
= E

[
exp

(
i
(2k + 1)π

2x
X

)]
= exp

(
−(2k + 1).π2

8x2

)
We proved that G(x) = H(x).

2 Recurrence of random walk on Z by optional stopping
Theorem 2.1 (Optional stopping theorem). Let {Mn}n∈N be a martingale and T is a stopping
time respect to filtration {Fn}n∈N. We have that E[|MT |] < ∞ and EMT = E[M0] if one of the
following holds

(i) The stopping time T is a.s. bounded; that is, there exists C ≥ 0 such that T ≤ C a.s..

(ii) T < ∞ a.s. and {Mn}n∈N is uniformly integrable and E[|MT |] < ∞.

Remark 2.2. Note that the condition E[|MT |] < ∞ is redundant. Indeed, by the martingale
convergence theorem we know that if {Mn}n∈N is a martingale with supn E[|Mn|] < ∞, then there
exists a random variable M∞ such that Mn → M∞ a.s. and E[|M∞|] < ∞. Let Mn = MT∧n,
then we have

sup
n

E[|Mn|] ≤ sup
n

E[|MT∧n|]≤ sup
n

E[|Mn|] < ∞.

In fact, E[MT∧n] ≤ E[Mn] for T < ∞ a.s.. It is obvious that {|Mn|}n∈N is a sub-martingale,
define Un = |Mn| − |MT∧n|, we can obtain that

Un+1 − Un = (|Mn+1| − |Mn|)1{T≤n}

due to
∣∣MT∧(n+1)

∣∣− |MT∧n| = (Mn+1 −Mn)1{T>n}. Therefore,

E[Un+1 − Un] = 1{T≤n} · E[|Mn+1| − |Mn| |Fn] ≥ 0.

It is obvious that {Mn}n = {MT∧n}n is martingale, therefore, we have

Mn → M∞ a.s..

and E[|M∞|] < ∞(i.e. E[MT ] < ∞ since T < ∞ a.s.).

Remark 2.3. The Optional stopping theorem is important, Let T = inf{n : Sn = 1}, we can
prove that T < ∞ a.s.(recurrent), but ST = 1 a.s., S0 = 0, we observe that E[ST ] ̸= E[S0].
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It is obviously that {Sn}n∈N+ is a martingale. Let Tz := inf{n : Sn = z}, then Tz is a
stopping time. For a < 0 < b, define stop time Ta,b := Ta ∧ Tb, which is the first exit time of
(a, b). Since Mn := STa,b∧n ≤ |a| ∨ |b| a.s., and Ta,b < ∞ P0-a.s., we have

0 = E[MTa,b
] = P(Ta < Tb) · a+ P(Tb < Ta) · b = P(Ta < Tb)(a− b) + b.

(where Ta,b < ∞ a.s. is due to that Wald’s identities and Dominated convergence theorem) can
obtain E[Ta,b] < ∞. Therefore,

P0(Ta < Tb) =
b

b− a
.

Note that i+ Sn have the distribution of a random walk started at i, Thus, for all 0 ≤ i ≤ k,

Pi(T0 < Tk) = P0(T−i < Tk−i) =
k − i

k
.

Note that
Pi(T0 = ∞) = lim

n→∞
Pi(Tn < T0) = 0,

Remark 2.4. We also can prove that Ta,b < ∞ a.s. by estimating P(Ta,b > nI) where I := b−a.
In fact, for any a < x < b,

P(Sn+I /∈ (a, b)|Sn = x, Ta,b > n) ≥ P(∀ 0 ≤ j < I,Xn+j+1 = 1|Sn = x, Ta,b > n) = 2−I .

Since Ta,b > n+ I implies that Ta,b > n and Sn+I ∈ (a, b), therefore, we have

P(Ta,b > n+ I)

=
b−1∑

x=a+1

P(Ta,b > n+ I|Sn = x, Ta,b > t) · P(Sn = x, Ta,b > n)

≤(1− 2−I) · P(Ta,b > n)

Inductively, we have
P(Ta,b > nI) ≤ (1− 2−I)n.

3 Borel-Cantelli Lemma and almost sure convenience
The proofs of almost all strong theorem are based on different forms of the Borel-
Cantelli Lemma and those of the Markov inequality. The main idea of Borel-Cantelli
Lemma is to construct a series to control the probability of evens.

Lemma 3.1. If
∑∞

n=1 P(An) < ∞, then P(lim supn→∞An) := P(An i.o.) = 0.

Proof. Define general r.v. ξ :=
∑∞

n=1 1An , it is obvious ξ is not negative. By E[ξ] =
∑∞

n=1 P(An) <
∞, we have ξ < ∞ a.s., which is due to

P(ξ = ∞) ≤ P(ξ ≥ N) ≤ 1

N
E[ξ].

By ξ < ∞ a.s., we have P(An i.o.) = 0.

Proof.

P(lim sup
n→∞

An) = lim
n→∞

P(∪k≥nAk) ≤ lim
n→∞

∞∑
k=n

P(Ak) = 0.
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Corollary 3.2. If

(i)
∑∞

n=1 P(An|Bn) < ∞,

(ii) Bn occurs a.s. if n is large enough,

then An occurs a.s. only finitely many times.

Proof. By Lemma 3.1, we have
∞∑
n=1

P(An ∩Bn) ≤
∞∑
n=1

P(An|Bn)P(Bn) ≤
∞∑
n=1

P(An|Bn).

Therefore, AnBn occurs a.s. finitely many times. By (ii), we complete the proof since Bn = Ω
if n is large enough.

The converse of the Borel-Cantelli lemma is trivially false.

Example 3.3. Let Ω = (0, 1), F = B((0, 1)) and P = λ. If An = (0, an) where an → 0 as
n → ∞, then lim supAn = ∅, but if an = 1

n , we have
∑

an = ∞.

Lemma 3.4. Let Sn :=
∑n

k=1Xk, where Xk ≥ 0. If E[Sn] → ∞, supn≥1 E[Xn] < ∞ and we
can find C, δ > 0 such that for any n ∈ N+,

Var(Sn) ≤ C · (E[Sn])
2−δ (1)

then
lim
n→∞

Sn

E[Sn]
= 1 a.s..

Proof. We can assume 0 < M := supn≥1 E[Xn] ≤ 1. Note that 0 ≤ E[Xn] ≤ 1 and E[Sn] → ∞,
it is easy to see the integer part of {E(n) := E[Sn]}n≥1 can take all natural numbers. Therefore,
we can find a subsequence {nk}k≥1, such that

k
2
δ ≤ E(nk) ≤ k

2
δ + 1, ∀ k ≥ 1.

By Markov’s inequality, and (1), we have

P
(∣∣∣∣ Snk

E(nk)
− 1

∣∣∣∣ ≥ ε

)
≤ Var(Snk

)

ε2 · E(nk)2
≤ C

ε2 · k2
, ∀k ≥ 1, ε > 0.

By Borel-Cantelli’s lemma, we have

lim
k→∞

Snk

E(nk)
= 1 a.s..

For n large enough, there exista k large enough such that n ∈ [nk, nk+1). In this time, utilize
the monotonicity of Sn and E(n), we have

E(nk)

E(nk+1)
· Snk

E(nk)
≤ Sn

E(n)
≤ E(nk+1)

E(nk)
·

Snk+1

E(nk+1)
.

Since E(nk+1)
E(nk)

→ 1 when k → ∞, we complete the proof.
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Lemma 3.5. If {An}n≥1 are independent evens, then
∞∑
n=1

P(An) = ∞ ⇒ P(An i.o.) = 1.

Proof. Since P(lim infn→∞An) = limn→ P(∪k≥nA
c
k), by the independence of {An}n≥1, we have

P(∩m
k=nA

c
k) = Πm

k=nP(Ac
k) = (1−P(Ak)) ≤ Πm

k=n exp(−P(Ak)) = exp

(
−

m∑
k=n

P(Ak)

)
→ 0(m → ∞).

Therefore,
P(lim inf

n
Ac

n) = lim
n→∞

P(∩∞
k=nA

c
k) = lim

n→∞
lim

m→∞
P(∩m

k=n) = 0.

In the following, we use Corollary 3.4 to prove

Lemma 3.6. If {An}n≥1 are pairwise independent evens, then
∞∑
n=1

P(An) = ∞ ⇒ P(An i.o.) = 1.

Proof. Let Sn :=
∑n

k=1 1Ak
, we compute the variation of Sn, for any n ∈ N+,

Var(Sn) =

n∑
k=1

Var(1Ak
) + 2

∑
1≤i<j≤n

Cov(1Ai ,1Aj )

=

n∑
k=1

P(Ak)−
n∑

k=1

P2(Ak) ≤ E[Sn].

Due to E[Sn] → ∞, by Corollary 3.4, we have Sn → ∞ a.s..

Proof. We only need to prove P(S∞ ≤ a) = 0 ∀ a > 0. For any a > 0, take N ≥ 1 large enough,
such that E[SN ] ≥ a. Then for any n ≥ N , we have

P(S∞ ≤ a) ≤ P(Sn ≤ a)

≤ P(−(Sn − E[Sn]) ≥ E[Sn]− a)

≤ E[|Sn − E[Sn]|2]
|E[Sn]− a|2

=
Var(Sn)

|E[Sn]− a|2

≤ E[Sn]

|E[Sn]− a|2
→ 0,

when n → ∞, since E[Sn] → ∞.

Lemma 3.7. Let A1, A2, cdots be a sequence of evens for which
∞∑
n=1

P(An) = ∞,

and
lim inf
n→∞

∑n
k=1

∑n
i=1 P(AkAi)

(
∑n

k=1 P(Ak))
2 ≤ C (C ≥)

then
P(lim sup

n→An

) ≥ C−1.
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The ideas to prove a.s. convergence by Borel-Cantelli lemma:

Lemma 3.8. Let {Tn}n≥1 be r.v. such that

∞∑
n=1

P(|Tn| > ε) < ∞

for each ε > 0. Then Tn → 0 a.s..

Proof. For each k ≥ 1,
∞∑
n=1

P(|Tn| > 2−k) < ∞.

Hence, by the Borel-Cantelli lemma(use [lim supnAn]
c), for each k ≥ 1, |Tn| ≤ 2−k for all n

sufficiently large, except on a null event Nk. It follows that

Tn(ω) → 0 for all ω /∈ ∪∞
k=1Nk.

Since ∪∞
k=1Nk is a null event, Tn → 0 a.s. follows.

Lemma 3.9. Let {Tn}n≥1 be r.v. such that

∞∑
n=1

P(|Tn| > εn) < ∞

for positive constant εn → 0. Then Tn → 0 a.s..

Proof. Applying Borel-Cantelli lemma to events {|Tn| > εn}, n ≥ 1.

We need to estimate P(|Tn| > ε), it just the Chebyshev inequality

P(|X| > ε) ≤ E[|X|]/ε

P(|X − E[X]| > ε) ≤ Var(X)/ε2

and
P(X > ε) ≤ exp(−tε)E[exp(tX)]

for each ε > 0 and real t.
The ideas to prove a.s. convergence. The moment estimate also is useful.

Lemma 3.10. Suppose that
∞∑
n=1

E[|Tn|p] < ∞,

for some p > 0, then Tn → 0 a.s..

Proof. By
∑∞

n=1 E[|Tn|p] < ∞, we have E [
∑∞

n=1 |Tn|p] < ∞. Moreover,
∑∞

n=1 |Tn|p < ∞ a.s.
and hence that Tn → 0 a.s..

The ideas to prove a.s. convergence by extracting subsequence.
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Lemma 3.11. Let {Xn}n≥1 is r.v. sequence, if there exists a subsequence {nk}k≥1 such that

Xnk
→ X a.s..

and
max

nk−1<n≤nk

∣∣Xn −Xnk−1

∣∣→ 0 a.s..

Then,
Xn → X a.s..

Proof. For n large enough, there exist a unique k such nk−1 < n ≤ nk, then

|Xn −X| ≤
∣∣Xnk−1

−X
∣∣+ max

nk−1<m≤nk

∣∣Xm −Xnk−1

∣∣→ 0 a.s..

Theorem 3.12.
lim
n→∞

Sn

n
= 0 a.s.. (2)

Proof. Since E[Sn
n ] = 0 and E[S

2
n

n2 ] =
1
n , by Chebyshev inequality, for any ε > 0, we have

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ε

)
≤ 1

nε2
,

Therefore, we have Sn2

n2 → 0 a.s. when n → ∞. Now we have to estimate the value of Sk for the
k lying in the gap. If n2 ≤ k < (n+ 1)2, then∣∣∣∣Sk

k

∣∣∣∣ = ∣∣∣∣Sn2n2

kn2
+

Sk − Sn2

k

∣∣∣∣
≤
∣∣∣∣Sn2

n2

∣∣∣∣+ ∣∣∣∣k − n2

k

∣∣∣∣ ≤ ∣∣∣∣Sn2

n2

∣∣∣∣+ ∣∣∣∣(n+ 1)2 − n2

k

∣∣∣∣→ 0 a.s..

Proof. Using f(t) := E[etSn ] =
(
et+e−t

2

)n
, E[S4

n] = f (4)(t)|t=0. We have

E
[
S4
n

n4

]
= n−3 + 6C2

nn
−4 = O(n−2).

By Theorem 3.10, we complete the proof.

Remark 3.13. By Bernstein inequality,

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(1 + 2ε)2

)
,

it is obvious that (2) holds true.
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4 Between LLN and LIL
By (2), we have |Sn| = o(n) a.s., it is natural to ask whether a better rate can obtained, in fact
we have.

Theorem 4.1. For any ε > 0,
lim
n→∞

Sn

n
1
2
+ε

= 0 a.s..

Proof. For any a position integer, by E[S2K
n ] = f (2K)(t)|t=0, we have

E[S2K
n ] = O(nK).

Note that for 2εK > 1, we have

E
[∣∣∣∣ S2K

n

nK+2εK

∣∣∣∣] ≲ 1

n2εK
.

By Lemma 3.10, we complete the proof.

By Borel-Cantelli lemma, we can obtain

Theorem 4.2.
lim sup
n→∞

|Sn|
n

1
2 log n

≤ 1 a.s..

Proof. By E[etSn ] =
(
et+e−t

2

)n
, we have

E
[
exp

(
n− 1

2Sn

)]
→ e1/2.

Hence,
P(Sn ≥ (1 + ε)n

1
2 log n) = P

(
exp(n− 1

2Sn) ≥ n1+ε
)
≲ 1

n1+ε

Moreover,
lim sup
n→∞

Sn

n
1
2 log n

≤ 1 a.s..

By the symmetry of Sn i.e. Sn equal to −Sn in law, we complete the proof.

Theorem 4.3. For any ε > 0,

lim
n→∞

Sn√
n(log n)1+ε

= 0 a.s..

Proof. First, we prove Kolmogorov’s maximal inequality. Let X1, X2, · · · be independent, mean-
zero and E[X2

k ] < ∞ ∀k ∈ N+. Then

P

(
sup

1≤k≤n
|Sk| > λ

)
≤ E[S2

n]

λ2
=

1

λ2

n∑
k=1

Var(Xk).
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We partition A∗ := {sup1≤k≤n Sn > λ} into the events Ak := {|Sk| > λ and |Sj | ≤ λ for all j < k},
then we have

E[S2
n] ≥ E[S2

n 1A∗ ] =
n∑

k=1

E[S2
n 1Ak

]

=
n∑

k=1

(
E[S2

k 1Ak
] + 2E[Sk(Sn − Sk)1Ak

] + E[(Sn − Sk)
2 1Ak

]
)

≥
n∑

k=1

E[S2
k 1Ak

] ≥
n∑

k=1

λ2P(Ak) = λ2P(A∗).

Second, let X1, X2, · · · be independent, mean-zero and E[X2
k ] < ∞ ∀k ∈ N+, then

∞∑
i=1

Var(Xi) < ∞ ⇒
∞∑
i=1

Xi < ∞ a.s..

By the assumptions about {Xi}i≥1, we see {Sn}n≥1 is a the Cauthy sequence in L2(Ω) space.
Therefore, there exist a S∞ ∈ L2(Ω) such that Sn → S∞ in L2(Ω). Moreover, there exist a
subsequence {nk}k≥1 such that Snk

→ S∞ a.s...
For any k ≥ 0 (let n0 := 0, S0 = 0), by Kolmogorov inequality, we have

P
(

max
nk<p≤nk+1

|Sp − Snk
| ≥ ε

)
≤ 1

ε2
E[
∣∣Snk+1

− Snk

∣∣2].
Note that

∞∑
k=1

E[
∣∣Snk+1

− Snk

∣∣2] = ∞∑
n=1

E[X2
n] < ∞.

By Borel-Cantelli lemma, we obtain that

max
nk<p≤nk+1

|Sp − Snk
| → 0 a.s..

Combining Snk
→ S∞ a.s., we can obtain Sn → S∞ a.s.. which called Extract Subsequence

Method. In fact, for n large enough, there exists a unique k large enough such that nk−1 <
n ≤ nk, then

|Sn − S∞| ≤
∣∣Snk−1

− S∞
∣∣+ max

nk−1<m≤nk

∣∣Sm − Snk−1

∣∣→ 0 a.s..

Kronecker’s lemma Let {an}n≥1 is a sequence of real number, and suppose bn ↑ ∞. If∑
i
ai
bi

< ∞, then
∑n

k=1 ak
bn

→ 0.
Finally, let an = Xn(ω) and bn =

√
n(log n)1+ε ↑ ∞, it suffices to show that

∞∑
k=1

Xk√
n(log n)1+ε

< ∞ a.s..

We only need to check

∞∑
i=1

Var

(
Xk√

n(log n)1+ε

)
=

∞∑
i=1

Var(Xk)

n(log n)1+ε
=

∞∑
i=1

1

n(log n)1+ε
< ∞.
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Let f(x) = 1
x(log x)α , for x large enough, we have f(x) > 0 and f is a monotonically decreasing

continuous function about x. Define F (x) = log log x if α = 1, F (x) = 1
1−α(log x)

1−α if α ̸= 1,
then we have F ′(x) = f(x) for x large enough. Therefore,∫ ∞

N
f(x) dx =

{
∞, if α ≥ 1,
1

α−1(logN)1−α, if α > 1.

Similarly, we can obtain that for any ε > 0, k ∈ N+

lim
n→∞

Sn√
n log n log(2) n · · · (log(k) n)1+ε

= 0 a.s..

The best possible rate was obtained by Khinchine which is called Law of Iterated Logarithm,

lim sup
n→∞

Sn√
2n log log n

= 1 a.s..

Lemma 4.4. For any positive integer N , we have

P (Sn ≥ k) ≤ e−
k2

2n

Proof. Since

P (Sn ≥ k) ≤ E[etSn ]

etk
=

(
E[etX1 ]

)n
etk

and
E[etX1 ] =

et + e−t

2
≤ e

t2

2 .

By taking t = k
n , we have

P (Sn ≥ k) ≤ e
nt2

2

etk
= e−

k2

2n .

Lemma 4.5 (Reflection principle). For any positive integer m, we have

P(M+
n ≥ m,Sn = s) =

{
P(Sn = s), if s ≥ m,

P(Sn = 2m− s), if s < m,

and

P(M+
n ≥ m) = P(Sn ≥ m) +

m−1∑
s=−∞

P(Sn = 2m− s) = P(Sn = m) +
∞∑

k=m+1

2P(Sn = k)

and thus
P(M+

n ≥ m) = 2P(Sn ≥ m+ 1) + P(Sn = m)≤ 2P(Sn ≥ m).

Lemma 4.6.

P(Sn = k) ∼ e−
k2

2n

√
πn

.
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Proof. Recall Stirling’s approximation

n! ∼
√
2πn

(n
e

)n
Then, we have

P (S2n = 2k) =
(2n)!

(n+ k)!(n− k)!
2−2n

∼ 1√
πn

1(
1 + k

n

)n+k (
1− k

n

)n−k

1√(
1 + k

n

) (
1− k

n

)
=

1√
πn

(
1− k

n

)k(
1− k2

n2

)n+ 1
2 (

1 + k
n

)k
Note that we need (n − k) → ∞ to use Stirling’s formula. We choose k =

⌊
x
√

n
2

⌋
so that

2k√
2n

→ x. It is not hard to see that if xn → 0, and yn → ∞ such that xnyn → t, then
(1 + xn)

yn → et. Therefore,

P(S2n = 2k) ∼ 1√
πn

(
1− x2

2n

)−n(
1− x√

2n

)x
√
n√
2
(
1 +

x√
2n

)−x
√
n√
2

→ 1√
πn

e−
x2

2 .

Lemma 4.7. Let k > n
1
2 , then there exist a constant C such that

P(Sn ≥ k) ≥ C · n
1
2

k
e−

k2

2n .

Proof. It is easy to see

P(Sn ≥ k) ≥ P(k ≤ Sn ≤ k +
n

k
) ≥ C · n− 1

2

k+n
k∑

m=k

e−
m2

2n .

For k ≤ m ≤ k + n
k , we have

e−
k2

2n ≥ e−
m2

2n ≥ e−
(k+n

k
)2

2n = exp

(
− k2

2n
− 1− n

2k2

)
≥ C · e−

k2

2n .

Therefore, we have

P(Sn ≥ k) ≥ C · n
1
2

k
e−

k2

2n .

Theorem 4.8. Define Fn :=
√
2n log log n, then we have

lim sup
n→∞

Sn

Fn
= 1 a.s..

Proof. The proof will be presented in two steps. The first one gives an upper bound of
lim supn→∞

Sn
Fn

, i.e. for any ε > 0, we show that

lim sup
n→∞

Sn

Fn
≤ 1 + ε a.s..
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The second one gives a lower bound of lim supn→∞
Sn
Fn

, i.e. for 0 < ε < 1
2 ,

lim sup
n→∞

Sn

Fn
≥ 1− ε a.s..

Step 1. Let Θ > 1, nk :=
⌊
Θk
⌋
, by reflection principle and Lemma 4.4, we have

P
(
M+

nk
≥ (1 + ε)Fnk

)
≤ 2P (Snk

≥ (1 + ε)Fnk
)

≤ 2 exp

(
−
(1 + ε)2F 2

nk

2nk

)
= 2 exp

(
−(1 + ε)2 log log nk

)
∼ (k logΘ)−(1+ε)2

By Borel-Cantelli lemma, we have

M+
nk

≤ (1 + ε)Fnk
a.s.,

for all but finitely many k.
Let nk ≤ n < nk+1,

Sn

Fn
≤ M+

n

Fn
=

M+
nk+1

Fnk+1

Fnk+1

Fn

M+
n

M+
nk+1

≤ (1 + ε)
Fnk+1

Fn
≤ 1 + 2ε a.s.,

where Θ(ε, k) is close enough to 1.
Step 2. Define nk = nk+1 − nk, by the definition of {Sn}n≥1, we have {Snk+1

− Snk
}k≥1

is mutually independent, Snk
and Snk+1

− Snk
are equal in law. By Lemma 4.6, for large k(ε)

enough, we have

P
(
Snk

= Snk+1
− Snk

≥ (1− ε)Fnk

)
≥ C ·

n
1
2
k

(1− ε)Fnk

exp

(
−
(1− ε)2F 2

nk

2nk

)
∼ 1√

log lognk
(lognk)

−(1−ε)2

where the last sim is due to 0 < ε < 1
2 . Note that lognk ∼ k, we have

∑∞
k=1 P(Snk

≥
(1− ε)Fnk

) = ∞, by Borel-Cantelli lemma, we have

Snk+1
≥ Snk

+ (1− ε)Fnk
i.o. a.s..

By the symmetric of the upper bound, we have

lim inf
k→∞

Snk

Fnk

≥ lim inf
n→∞

Sn

Fn
≥ −(1 + ε) a.s..

Therefore, we have

Snk+1

Fnk+1

≥ Snk

Fnk

Fnk

Fnk+1

+ (1− ε)
Fnk

Fnk+1

≥ −(1 + ε)
Fnk

Fnk+1

+ (1− ε)
Fnk

Fnk+1

→ −(1 + ε)

Θ
1
2

+ (1− ε)

(
Θ− 1

Θ

) 1
2

.

Take ε → 0+ and Θ → ∞, we complete the proof.

Using almost the same method, we can prove the result about Brownian motion. For the
convenience of the readers, we provide the detailed proof.
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Theorem 4.9. For a Brownian motion B in R, we have

lim sup
t→∞

Bt√
2t log log t

= 1 a.s..

Proof. when u → ∞, we have∫ ∞

u
e−

1
2 dx ∼ u−1

∫ ∞

u
xe−

x2

2 = u−1e−
u2

2 .

In fact, ∫ ∞

u

1

x
(xe−

x2

2 ) dx =

∫ ∞

u

1

x
d(e−

x2

2 ) =
1

x
e−

x2

2

∣∣∣∣∞
0

−
∫ ∞

u

1

x2
e−

x2

2 dx.

Let M+
t = sup0≤s≤tBs, then by reflection principle, we have

P(M+
t > ut

1
2 ) = 2P(Bt > ut

1
2 ) ∼ 2√

2π
u−1e−

u2

2 .

Step 1. Define Ft =
√
2t log log t, for any Θ > 1 and 1 + ε > 1, for n large enough, we have

P(M+
Θn > (1 + ε)FΘn)

≤2P
(
BΘn

√
Θn

>
(1 + ε)FΘn

√
Θn

)
≲
√

Θn

(1 + ε)2F 2
Θn

exp

(
−1

2

(1 + ε)2F 2
Θn

Θn

)
≲ 1√

log logΘn
exp

(
−(1 + ε)2 log logΘn

)
∼ (n logΘ)−(1+ε)2 .

By the Borel-Cantelli lemma, we obtain that for n large enough,

M+
Θn

FΘn
≤ (1 + ε) a.s..

Therefore, for Θn ≤ t < Θn+1, Θ approach 1,

Bt

Ft
≤ M+

t

Ft
=

M+
Θn+1

FΘn+1

FΘn+1

Ft

M+
t

M+
Θn+1

≤ (1 + ε)
FΘn+1

Ft
≤ 1 + 2ε a.s..

Step 2. For 0 < ε < 1
2 , we have

P
(
BΘn+1 −BΘn > (1− ε)F[Θn+1−Θn]

)
≥ C · (Θ

n+1 −Θn)
1
2

F[Θn+1−Θn]
exp

(
−
(1− ε)2F 2

[Θn+1−Θn]

2(Θn+1 −Θn)

)
∼ 1√

log log(Θn+1 −Θn)

(
log(Θn+1 −Θn)

)−(1−ε)2

Since log(Θn+1 −Θn) ∼ n, we have
∞∑
n=1

P
(
BΘn+1 −BΘn > (1− ε)F[Θn+1−Θn]

)
< ∞.

By Borel-Cantelli lemma, we have

BΘn+1 ≥ BΘn + (1− ε)F[Θn+1−Θn] i.o. a.s..
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By the symmetric of the upper bound, we have

lim inf
n→∞

BΘn

FΘn
≥ lim inf

t→∞

Bt

Ft
≥ −(1 + ε) a.s..

Therefore, we have
BΘn+1

Θn+1
≥ BΘn + (1− ε)F[Θn+1−Θn] i.o. a.s..

BΘn+1

Θn+1
≥ BΘn

FΘn

FΘn

FΘn+1

+ (1− ε)
F[Θn+1−Θn]

FΘn+1

≥ −(1 + ε)
FΘn

FΘn+1

+ (1− ε)
F[Θn+1−Θn]

FΘn+1

→ −(1 + ε)

Θ
1
2

+ (1− ε)

(
Θ− 1

Θ

) 1
2

.

Take ε → 0+ and Θ → ∞, we complete the proof.
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